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THEORETICAL STABILITY DERIVATIVES OF THIN SWEPTBACK WINGS
TAPERED TO A POINT WITH SWEPTBACK OR SWEPTFORWARD
TRAILING EDGES FOR A LIMITED RANGE OF
SUPERSONIC SPEEDS

By Fraxk 8. MaLvestUTO, Jr. and KexNeTE MAaRrcoLls

SUMMARY

The stability derivatives valid for a limited range of super-
sonic speeds are presented for a series of sweptback wings
tapered to a point with sweptback or sweptforward trailing
edges. These wings were derived by modifying the trailing
edge of ¢ basic triangular wing so that i coincided with lines
drawn from the wing tips to the wing axis of symmetry. The
stability dericatives were formulated by wusing the pressure
distributions previously obtained for the basic triangular wing
for angle of attack, constant verfical acceleration, sideslip,
pitching, rolling, and yawing. Explicit expressions are given
for the stability derivatives with respect to principal body azes,
and conversion formulas are provided for the transformation to
stability axes. The results are limited to Mach numbers for which
the wing is contained within the Mach cones springing from the
vertex and from the trailing edge of the center section of the wing.

INTRODUCTION

Methods based upon linearized potential flow have been
developed in references 1 to 5 for determining the pressure
distributions for angle of attack and sideslipping, pitching,
and rolling motions of a triangular wing of small thickness
traveling at supersonic speeds. The results of these investi-
gations are valid for a range of Mach number for which the
Mach cone springing from the apex of the wing may be
behind or ghead of the leading edge of the wing. In refer-
ence 6 attention is given only to triangular wings contained
within the Mach cone springing from the wing apex. Methods
are obtained therein for determining the rolling moment due
to yawing and the several side-force and yawing-moment
derivatives, together with a collection of all the known
stability derivatives for triangular wings at supersonic
speeds. As pointed out in these previous investigations, if
the trailing edge of the triangular wing is modified so as to
coincide with any line which is inclined at an angle always
greater than the Mach angle (fig. 1), a series of sweptback
wings with sweptback or sweptforward trailing edges will be
developed which will have the same pressure distribution over
their surfaces as that determined for the basic triangular
wing. This phenomenon is based on the well-known fact

that, in linearized supersonic flow, disturbances cannet
propagate any farther forward than the Mach cone from the
origin f disturbances.

The object of the present report is to determine the
stability derivatives at supersonic speeds for this limited
series of sweptback wings with pointed tips by using the
pressure distributions previously determined for the basic
triangular wing. Explicit expressions are presented for these
stability derivatives with respeect to the principal body axes,
and conversion formulas are provided for the transformation
to stability axes.

The results are restricted to wings that are contained within
the Mach cones springing from the apex and the trailing
edge of the center section of the wing.
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FicURE I.—Swepthack wing tapered@ to a point with sweptbaek or sweptforward trailing
edges. The elemental triangle and associated data are shown with respect to wing with
sweptback trailing edge. Note that trailing edge is alwaye inclined at an angle greater
than the Mach angle ((INI<BC).
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SYMBOLS

rectangular coordinates (figs. I and 2)

incremental flight velocities along 2-,y-,and z-axes,
respectively (fig. 3)

angular velocities about -, -, and z-axes, respec-
tively (fig. 8)

flight speed

stream Mach number (V/Speed of sound)

Mach angle (&zin‘1 %)

cotangent of Mach angle (vM*—1)
angle of attack (w/V)

angle of sideslip (v/V)
semivertex angle of triangle (fig. 1)
_ local lifting pressure (pressure difference between
~ upper and lower surface of airfoil)
P density of fluid
b wing span
¢ root chord of basic triangular ng (ﬁg 1)
¢ . root chord of sweptback wing (fig. 1) ’
c mean acrodynamic chord

x’ y! z

(‘5=-4—- f " (Local chord)? dy =§ e(1 —N))
2 2b
Te(1—N),

ratio of slope of leading edge to slope of trallmg

y_c—¢_tane 4 cof A)
" edge (1\ T —tems— 1

aspect ratio (A—b

=

wing area <S=-% bey=2 be(1—N) =% bz-)

sweepback angle of leading edge (90°—¢)

S

C leading-edge slope (O =tan e=2ic> _
A

é angle of trailing-cdge slope (fig. 1)
Y=

ta,n"lg - (fig. 1)
I )
"=z tan e mO (ﬁa 1 )
Zeg d1stance of center of gravity forward of (3 ¢,0 0)
pos1t10n
L static margin {2 Onq
¢ i I
yind (BO) complete elliptic integral of the second kind with
2 x/2
modulus & <f ! 1—Fk?sin? 2 dz)
s
F'(BO) complete elliptic integral of the ﬁrst kind with
v o w2
modulus k (f m
1
1t —_— .
E/(B0)= g
." B - .
eBo)=Z"EN . e e e
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1—BC?

—SB0Y E (BO) F 50T (BO)
B 9(1—B*C?)
IBO=5—poy & B0)—B°0°F (BO)
J(BO=E" BO)I (BO)YI—BC"

C%(BO’)—(1

L rolling moment
L normasl force (approx. lift)
M’ pitching moment
N' yawing moment
Y lateral force
Cr lift coefficient T L
. 3 e V28
’
C, rolling-moment coefficient I_—L
V8b
. £t
Cn pitching-moment coefficient T M
_ = pV2Se
T
C. yawing-moment coefficient 1——1\'——
72
'§ pT’ Sb
. Y
Cr lateral-force coefficient (1 )
. . = 72S
5 PV
Cb, T

profile-drag coefficient <1M)

5 o V28
When e, &, ¢, p, B, and 7 are used as subscripts, 2 nondimen-

sional derivative is indicated, and this derivative is the slope
of the variation through zero. For example,

C'm&==— (10"
a<2V ) a—0
Cn,=
a(2V ) g0
Ozp-:- B(’:
2(57).
Chy= _%%1 g-0
and
2(57) ).

A dot above a symbol denotes differentiation witl respect
to time. o
* All angles are measured in radians.
Unprimed stability derivatives refer to principal body axes;
primed stability derivatives refer to stability axes.



STABILITY DERIVATIVES OF SWEPTBACK WINGS AT SUPERSONIC SPEEDS

ANALYSIS

The stability derivatives of a triangular wing of zero
thickness at small angles of attack in a supersonic air stream
have been determined theoretically in the investigations of
references 1 to 6. These derivatives, with the exception of
those which depend on skin friction, may be separated into
two classes—the derivatives which depend upon the distri-
bution of pressure over the wing and the derivatives which
depend upon the suction force along the leading edge of the
wing. Although the edge-suction derivatives have been
summarized in this report, the pressure coefficients needed
to determine these derivatives are not presented. The local
lifting-pressure coefficients used to obtain the derivatives
which are dependent on the pressure distribution over the
trianguler wing contained within the Mach cone springing
from the apex are presented in table I. These lifting-pressure

coefficients and obviously the lifting pressures ( local pressure

coeflicient times %sz) are of the general form z"f(x) where z

is the z-component of the distance from the origin of the axes
to a particular point on the wing and 7 is the ratio of the
slope of a ray from the vertex of the wing through the point
to the slope of the leading edge of the wing. (See fig. 1.}
For the local lifting-pressure coefficients of the stability
derivatives listed in table I, the exponent # of the distance z
is either equal to 0 or to 1. For n=0, the pressure is con-
stant along any ray s=Constant from the vertex; this case
is termed ‘““conical flow.”” For n=1, the pressure increases
linearly along each such ray, and the flow may be termed
“quasi-conical.”

The particular form #%f(s) noted for the distribution of the
lifting pressures suggests the “triangular” integration pro-
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FIGURE 2.—Axes and notation used in analysis.
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F1auRE 3.—Velacities, forces, and moments relative to prineipal axes with origin at %— c.
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cedure for determining the forces and moments. Thus, the
wing is considered as composed of an infinite number of
elemental triangular areas (fig. 1). The lift and first mo-
ment of the lift are then determined for each elemental tri-
angular area and the results summed up by integration to
give the force and moment derivatives for the complete
wing. Figures 2, 3, and 4 indicate the position and positive
direction of the axes used in the analysis together with the
positive direction of the velocities, forces, and moments
relative to these axes.

nY

FGURE é.—q\‘elocities, forces, and moments relative {o stability axes with origin at

% e—T,g* Principal axes of figure 3 dotfed in for comparison.

Conical flows: Derivatives (', Cn,, and C,.—Table I
shows that the local lifting-pressure coefficients of the
derivatives Cr_, Cn,, and (', depend solely upon # and
therefore represent conical flows. The lift of an elemental
triangle (see fig. 1) is

dL=% 2, dy, P(x) o)

where P(%) is the local lifting pressure for any of these
three stability derivatives. Since z, and ¥, can be written
as funetions of 7, that is,

T
h=35¢ 1—-N7q
3- d
dyi=5 ¢C 1_1,7\].1’
equation (1) becomes
9, P dy
dL—S ¢*C =N @)

For the moment of Lift of an elemental area (reference 1),
consider the fact that for a conical-flow condition the result-
ant lift of a triangle acts at a point % the chord of the tri-

. 2
angle from the vertex, or for this case 3% of the elemental

triangle. Hence, the moment of the elemental lift about the
y-axis (origin at the vertex of the triangle) is

dM' =23, dL
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and by the use of equation (2) this moment becomes

’__ 9 =3 P("I) dﬂ
AM'=—5 B0 s @)

For moments about the # principal axis (rolling moments)
dL/'=—y dL

where y is the y-coordinate of the position of the center of
pressure for P=f(y). Figurelindicates that for this condition

y=20nu =20+
hence '
r____._.___g.— P("?)‘ﬂ dn R
dL'= 80302——(1 —NaF - @)

Equations (2), (3}, and (4) are the differential forms of

the lLift and the pitching and rolling moments of the wing

when the pressure distribution is a function only of 4.
In order to obtain the lift and the pitching and rolling

moments, the P(y) functions (pressure coefficients multiplied

by %pV2 for these motions obtained from table I are sub-

stituted into equations (2}, (3), and (4) and these equations
are integrated with respect to # over the entire wing. Be-
cause the wing is symmetrical with respect to the.z principal
axis the integration can be performed between the limits 0 to 1
and theresults multiplied by 2. Thenondimensional integral
forms of the stability derivatives Cz , Cn_, and 0‘5 havebeen
derived, converted to a different center-of-gravity position,
and listed in table I. The new center of gravity is located

a distance %c from the vertex, and the shift affects only the

derivative Cp .- Integration of the infegrals involved in
these derivatives will produce functions of NV which give the
variation of the stability derivatives with N, the ratio of the

slope of the leading edge to the slope of the trailing edge of
the wing. The derivative 'Cy  has previously been deter-

mined in referénce 7 for the type of wing considered herein.

Quasi-conical flows: Derivatives Cy,, Cry; Omy, Cuyy Cis
and C; .—Table I indicates that the pressure coefiicients for
the derivatives Cy,, Cr ,COn;,Cn 01y, and C,, are of the form
z f(n) where z is the z-component of the distance from the
vertex of the wing to the point in question. For this case
the lift of an elemental triangle is given by

az=[""2fa)a0 dy da
which can be rewritten as

T=1y 3
dL=Fn)C dn f et du= )OS dn
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hence ) d
Sy J(n) d
dL—S ¢ 0(1 —NaF (5
Reference 4 indicates that when the pressure is of the form
zf(n) the resultant lift acts at the %-chord point of the triangle

which for this case is equal to -3—:51. The moment about the

4
y-axis (origin at the vertex of triangle) is (see equation (5))

dM'=—§ 2, dL

81.,, fn) d
52207 —WN:)'1 ©

In a menner similar to the development of equation (4), the
following rolling-moment equation results when P=af(n):

dl'=—y dL
81 s S)n dy
=—%1°C" (I—N7)t -

Equations (5), (6), and (7) are the differential forms of the
lift and pitching and rolling moments for cases where the
pressure distributions are of the form =zf{y), that is, of a
quasi-conical type. Substitution of the appropriate func-
tiori f(n) for C;; and C;, in equation (5), for Cp; and Cp, in
equation (6), and for C;, and (), in equation (7) will give
these derivatives as a function of IV after the necessary opera-
tions are performed and the resulting equations are reduced
to coefficient form. Table I presents the nondimensional
integral form of these derivatives with the origin shifted

from the vertex to a point % ¢ from the vertex.

Edge-suction derivatives Cup Cu,r Cuy Ory O, ande
Cy,—The yawing and side-force derivatives depend upon
the suction force along the leading edge of the wing (refer-
ences 3_and 6). This suction force arises as a consequence
of the subsonic nature of the external flow field in the vicinity
of the leading edge of the wing when the leading edge is
swept behind the Mach cone springing from the apex of the
wing. Changes in the sweep of the frailing edge and area
of the wing brought about by varying N have no effect on
the leading-edge suction forces for the class of sweptbacl
wings considered herein. These wings, as stated previously,
are contained within the Mach cones springing from tho
vertex and from the trailing edge of the center section of the
wing. The values of the coefficients are modified, however,
because of the difference in the reference wing area; that is,
the wing area of the sweptback wing is equal to (1—N)
times the wing area of the basic triangular wing. Theo
derivatives obtained in reference 6 have been accordingly
modified and are presented in table II of this report where
the quantity (1—XNN) has been denoted by. Fi;(N). The
degree of applicability of these suction-force derivatives to
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actual full-scale wings is somewhat uncertain for the reasons
pointed out in reference 6 for triangular wings.

RESULTS AND DISCUSSION

The preceding section set forth a method for determining
the stability derivatives for a Iimifed series of sweptback
wings with pointed tips and sweptback or sweptforward
trailing edges as a function of the trailing-edge-sweep
parameter

4 cot A
A

_tan e
Ttan §

N 1

The procedure employed pressure coefficients previously
determined for the basic triangular wing. Table IT gives
the values of the stability derivatives in the principal-axes

system with origin at (% 6,0,0) as shown in figure 3 and also

the conversion formulas for determination of the derivatives
in the stability system of axzes with origin at a distance

9
ahead of the (§ c,0,0) point as shown in figure 4. These

formulas giving the conversion of the stability derivatives
from the principel-axes system to the stability-axes system
were obtained by an extension of the transformation equa-
tions of reference 8 to take into consideration the shift in the
origin of the stability axes of distance z, ahead of the origin
of the principal axes. In the conversion formulas for the
stability-axes system, terms whose magnitudes are extremely
small compared with unity have been omitted. The quan-
tities E*/(BC), Q(BC), G(BC), I{BC), and J(B(C) are the
elliptic integral factors of the stability derivatives that deter-
mine their variation with Mach number. These factors are
shown graphically in figure 5. The F(V)factors of each of the
derivatives are functions of N which give the effect of trailing-
edge sweep on the derivatives. Figure6 presents the variation
of the F(N) factors with & from N=—1, which corresponds
to the case where the Mach lines coincide with the
leading and trailing edges of the wing (symmetrical diamond
plan form}, to V=1, which corresponds to the limiting ideal-
ized case for which the trailing edge coincides with the leading
edge of the wing. For N=0, of course, the plan form of the
wing corresponds to that of the basic triangular wing.
Because of the extremely rapid variation of some of the F(N)
factors with N, the product (1—N)*F(IV) was plotted in
figure 6 for these cases instead of merely the functions. The
formulas for the F(N) factors are listed in the appendix
together with the solution of the definite forms of the integrals
that appear in the evaluation of each of the F(N) factors.
For very sccurate evaluations of the stability deriva-
tives it is suggested that the necessary F(&V) factors be cal-
culated using the formulas for these factors listed in the
appendix instead of using the curves of the F(N) factors
presented in figure 6.

Typical variations of the stability derivatives with trailing-

936646—51. 28
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FIGURE 5.—Veriation of the elliptic integral fzctors with BC.
tan
BG=E£‘="ML1 cot A.

edgesweep parameter N and with Mach number 3f are
presented in figures 7 and 8,respectively. Because of the local-
ized infinities at BC=1 for the suction derivatives Cy,, Gy,
and O, in the principal-axes system, all the lateral deriva-
tives in the stability-axes system (determined by a trans-
formation from the principal axes to the stability axes)
which contain these suction derivatives will also become
locally infinite at BC=1. For this reason the variations of
the illustrative lateral derivatives in figure 8 are given for a
range of Mach number with an upper limit slightly less than
the Mach number corresponding to BC=1. It may be
noted that such a localized infinity is defined with reference
to an infinitesimal angle of sideslip, and the average deriva-
tive for a small but finite sideslip is not extremely large.
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oL In reference 9 the consideration of skin friction is shown to
yield an appreciable damping moment. The skin-friction
moment has been evaluated therein as _
- , ¢ (zC 1 - 9
=77 oz ovi[(s-2e) Bty dydz @
0 J—2zC : -
-2k where 17 is the resultant velocity and
2 7 2 1 m2 2 2
(2} V=V —ryy+ri{z—3g¢
_5 L I 1 1 ] 1
/7 L2 L4 L6 L8 20 22 2
Mach number, M ryz—g¢
; i local sideslip angle and equals————%
R and 8 is the loca p ang q 474 to
Freuas 8.—The varlation of the stabillty erivatives wlﬂ:li. Mzol nmber the first order in . Equation (8) also applies to the wings
=8; 5=0.05; Opy=0.006; C1.=0.10. BCZIN|=1——|.. considered herein provided the necessary changes are made
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in the limits of integration. Substituting the proper limits
for the sweptback wing in the integrals of equation (8) and
performing the necessary operation yields the following
nondimensional form of the skin-friction couple that is a
pert of the derivative C, :

o ( { 2 V2Sh f mf e 203 2 PV
[(x——sz- c) B-I—y:l dz dy} @

where, in terms of N and A, the upper limit ¥ cot §-+¢, of

2 NQ@Cy—10b)+b
the inner integral is equal to — I 1N

. . 4y . .
limit ¢/C is equal to ANy The evaluation of equation

and the lower

(9) gives, to the first order in 7, in the body-axes system,

1 4 1—-N-|+3N
Cu)=—Cn| gHoa T—NF
. 1—N-L3N

where the function designated by F13(V) is plot-

(1—N)yE
ted against N in figure 6.

In the formulation of the derivative C;_ the associated local
lifting-pressure coefficient listed in table I and originally
determined in reference 6 does not include the effect of the

REPORT 971—NATIONAL ADVISORY COMMITTEE FOR ABRONAUTICS

spanwise variations in local Mach number caused by yawing
(although the wvariation in forward speed is taken into
account). In the text of reference 6 based on the results of
calculations on an infinite-aspect-ratio rectangular wing
using the Ackeret theory, it is indicated that the spanwise
variation of the compressibility effect to the first order in »r
will produce first-order changes in the local lifting pressures
and hence in the rolling moment due to yawing. The value
of C';, presented herein and obtained under the approximation
of zero spanwise variation of the local Mach number is there-
fore subject to doubt and should be considered only as a
rough indication of the true value.

The stability derivatives of this report are valid only above
tan e

tan §
which is the condition that the trailing edge be swept less
than the Mach lines. An additional limitation is that the
Mach number must be sufficiently above unity for the lincar-
ized theory to apply. In addition to these limitations on
the range of validity of the derivatives, the limitations for
the basic triangular wing discussed in reference 6 also apply
to the sweptback wing of this report.

a certain minimum Mach number given by BC = |N| =‘

LaNeGLEY AERONAUTICAL LIABORATORY,
NarroNAL Apvisory COMMITTEE FOR AERONAUTICS,
LaneLeY F1eLp, VA., September 23, 1948.



APPENDIX

EVALUATION OF THE F(N) FACTORS OF THE STABILITY DERIVATIVES

The determination of the F(N) factors necessitates the evaluation of the definite integrals given in table I. The
integrals of table I are or can be formed from the following basic integrals:

1 dn 1 N—n ., Ny1—7? 1 E—[—sin‘l N+NJI-N?
= —_ -1 I _
! ﬁ (1—Ng)i—n2 L(V*—1)V1I—N? e ke e 7 T(Nz—l)(l—Nn) (1—N2pt

7 fi —N*+2) oo N +(1\T3+31\ﬁn—4N)xfﬁ]:
o (1—N1,)=- TLeqr— i 1—N7q 2(N*—1)*(1 —Nnq)*
@+N?) (§+s'm—l N)+N(4—Nz) VI

2A—NoP

- dg____ _[ 3N2+2 cin1 3 N— 1y [P AN+ 11N —n@BN*{2TN)4-2N°—5N°4-18N]y1—7* |
e —Napy1—5* | 2(N*—1)*V1—N? ~Ny B(N*—1)*(1—Nn)® 0

3(31\"+2)( +sur1‘11\7)-i-(21\75 5N34 18N)\f1—N2
8(1—N2P{/1—N? '

3 Z\Z Z PR [__7_
I_f ek =[ = ZH_) sin-t N—1 | [1@N*—N)—aNT 41— 2]1 (2N*+1)( 5+sin IN)-‘-. 3NI—N*
e —Napi— 20V2—12{1—N*"" T—Nq ' eNNP—IPA—Nn? o 2(1—N221-N?
= J'L o [ e sin™ N—M[nz(ﬁNsﬂONS—N) 7(BN*+27N*—3)+ 2N+ 13N]YI—7°
e @-Nw T LV -DI-N Nq' BVI— 1)’ —Nn)® ‘ l

s 1)( +sm‘1N)+N(2N2—'—13)1
BU—NY Y-

The F(N) factors are formulated by referring to tables I and II and by using the evaluation of the five basic mteorals
and are as follows:

2 — N2
0= (— N} L= T (5-+sin™ N+NVI-F")

@+N7) <g+sin-1 N)+N(4 _N3/T=N?
AT NNy

FiN)=2 (1 —NYL—=

Fu) == 0~V L D=3 TR =y [3 (F+sin NN G—2N) VT—F ]

2

F(N)y= —: 1—-N)L,= (1 - NY (1 —N)/? (2 +sin~* N4-N 41 N")

P =21 —W) (h—(~M =y =yl @~ (5-+ 0N )+ (V4 2N —2) 1=

Fn="2 —N)zl:% (—I) —-1_2—N(12—L)] = N)5i(1 - N)l,.,[a—sz\r) (§+sin-1N)—N(ﬁN=+ 8N—7) m]
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F,(N)=§(1 —N)”[% @L—R—1@L-I 4)]=31r(1 ™™

16N*—20N*—40N+29) JT—N? _Nz:l

9(2—16N°-H27N?) (§+sin-1 N)+9N1/_1 NP (BN 16N? -+ 17N?— 32N +6)

TR — Ny [3(6N ?—8N+1) (g +sin~'N )+N (12N*+

128(1 —NHE(1+N)?

FAN)=% (L —N) L= — e | @D (5+sin™ V) +3NVI=IF

FuM)=2 (1 —Np1,= 20000 [3<4N2+ 1) (Fein- M+NEN+19) /=N 1~N2]

F11(N)=1_N
*—N+1

The factor Fy; (V) is merely the ratio of area of the sweptback
wing to basic triangular wing. The factor Fip (N) is asso-
ciated with the skin-friction contribution to the derivative
GC,. (See section entitled “Results and Discussion.”)

The variation of each of the F(V) factors with N from
N=—1 to N=1 is presented in figure 6.
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TABLE I—PRESSURE COEFFICIENTS AND INTEGRAL FORMS OF THE STABILITY DERIVATIVES AT SUPERSONIC
SPEEDS OF A SERIES OF SWEPTBACK WINGS TAPERED TO A POINT WITH SWEPTBACK OR SWEPTFORWARD

TRAILING EDGES (|N|=BO)

Refer- Pressure coeficient, Integral form of stability derivative
Stability | €099 108 Layz 2
derivative co- 2 (origin of principal’ axes at T:trom vertex)
effictent (origin of axes at apex of wing)
40& rr T d"f
—_— B 1— 2 —-—
an 2, 3 E’(BC)'\/I—“F AE ( C’) ( A) J; (1 N‘l))z Il'—ﬂ"
4aCM2[ [ 2— P L [ _ @—dn
) e oy [(111— ,)G(BC)— 242 -y G(BC)J; N
L.
* 1 x4 rr ] rr Y 1 1 (1 112)(111
(-\/1—1)2 M—\/T nz)E (BG) B (BC) (J; (1—Nn)3\/1—,, +sz; A —Nn)y "1—11-)]
49CG(BC) [z(2—n) _ 1y 1 @—)da - dn
Cp | 4 (B [eli_1 246(BO)(L~NP: | TN 248" (BOY - [ o
4Ca 11 dg_____
Cn, 2,3 E"(BO)Wi—7# AE"(BC) [(1 - ] (1 —N )—\/1 —? —a-ny ¢ (I—Nn)a‘\[l—ﬂz]
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TABLE II.—STABILITY DERIVATIVES AT SUPERSONIC SPEEDS OF A SERIES OF SWEPTBACK WINGS TAPERED TO
A POINT WITH SWEPTBACK OR SWEPTFORWARD TRAILING EDGES ([N|<BC')

P P

Principal axes (origin at (%c, 0, o)) Stahility axes (origin at distance z.; ahead of-g-c point)
Stability Stability
deriva- Formula deriva- Conversion formula
tive i tive
Ce, 5 AB"(BC)F\(N) Cr’ Cr,
—Tm | —36(BORN) +2E" (BO)F(N) +
C'L;, 1 Cry Cr;
313 B (BOF) |
Cr, % A[3G(BC)Fs(N)—2E" (BC)F4(N)] Cr Crot2 %’ Cra
Cime 3 AB" (BOYFs(N) Cone! Cre—ZF Ci,
3rAM? ' E " Fs(N)
oL B (BO)FA(N) + g B (BOYFW(N)
' F5(N) 37:: e,
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